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Introduction

M. Freedman proved that every smooth homotopy 4-sphere M4 is homeomorphic to S4. Our main
goal is to give an exposition of his proof. (In this paper, every manifold will be metrisable and finite
dimensional.) We do not know yet whether such an M4 is always diffeomorphic to S4. On the other
hand, Freedman proved that every topological homotopy 4-sphere M4 (without any given smooth
structure) is actually homeomorphic to S4 (see below).

H. Poincaré made a conjecture according to which every smooth, homotopy n-sphere Mn is dif-
feomorphic to Sn. The first non-trivial case, of dimension 3, remains open despite of ceaseless efforts
of innumerable mathematicians. An amusing detail is the counterexample of J. H. C. Whitehead
[Whi35b]; his own false proof of this conjecture plays large role in this lecture (see Section 2).

J. Milnor discovered [Mil56] smooth manifolds M7 which are homeomorphic to S7 but not diffeo-
morphic to S7 (such exotic spheres exist in dimension ≥ 7 [KM63]). Therefore the above Poincaré
conjecture has to be revised for dimension ≥ 7. S. Smale [Sma61] established his theory of handles to
prove that every smooth homotopy n-sphere is homeomorphic to Sn for n ≥ 6. His technical result,
the h-cobordism theorem (see below) is more precise. By combining this with surgery techniques of
Kervaire-Milnor [KM63] establishes n = 6 and 5 cases of the above Poincaré conjecture. M. Newman
adapted the engulfing method of J. Stallings to prove the purely topological version, that is, every
topological homotopy n-sphere is homeomorphic to Sn if n ≥ 5. (Smale’s surgery method has also
been adapted to the topological category [KS77].) In summary, Poincaré conjecture is essentially
resolved in dimension ≥ 5, is not resolved in dimension 3 and is partially resolved in dimension 4.

We sketch a proof of Freedman’s theorem which implies the topological classification of smooth,
simply-connected closed 4-manifolds and many other results of the fundamental importance. Let V
and V ′ be two such manifolds. Suppose that there is an isomorphism Θ: H2(V ) → H2(V ′) which
preserves the intersection forms. (Note that V is a homotopy 4-sphere if and only if H2(V ) = 0.)

Theorem A. In this situation, Θ is realised by a homeomorphism V → V ′.

Proof. It is not difficult to realise Θ by a homotopy equivalence g : V → V ′ [MH73]. Surgery theory
[Wal64, Bro72] gives a compact 5-manifold W with boundary ∂W = V t−V ′ such that the inclusions
V → W and V ′ → W are homotopy equivalences and such that the restriction r|V : V → V ′ of the
retraction r : W → V ′ is homotopic to g. The compact triad (W ;V, V ′) is called an h-cobordism.
Smale’s theory of handles tries to improve a Morse function f : (W ;V, V ′)→ ([0, 1]; 0, 1) to obtain a
situation where f has no critical points, that is, f is a smooth submersion. Then W is a fibre bundle
over [0, 1] (a remark of Ehresmann) and hence W is diffeomorphic to V × [0, 1]. We are going to find a
topological submersion f which shows that W is a topological fibration on I (see [Sie72b, Section 6])
so that W is homeomorphic to V × [0, 1]. �

In particular, we will prove the simply connected, topological 5-dimensional h-cobordism theorem.

Theorem B. Every smooth, compact, simply connected, 5-dimensional h-cobordism (W ;V, V ′) is
topologically trivial. That is, W is homeomorphic to V × [0, 1].
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For n ≥ 6, instead of 5, Smale’s h-cobordism theorem gives the stronger conclusion that W is
diffeomorphic to V × [0, 1]. In dimension 5, his methods apply, but leaving to prove that W is
diffeomorphic to V × [0, 1]. The following problem is not yet resolved:

Remaining smooth problem. Let S = S1t· · ·tSk and S′ = S′1t· · ·tS′k be 2 families of disjointly
embedded 2-spheres in a simply connected 4-manifold M (in fact f−1(a point)) in such a way that
the homological intersection number Si ·S′j = ±δi,j . Can one reduce S ∩S′ to k points of intersection
(smooth and transverse) by a smooth isotopy of S in M?

Similarly, to obtain the fact that W is homeomorphic to V × [0, 1], we claim (see [Mil65] and [KS77,
Essay III]) that it suffices to solve the following problem:

Remaining topological problem (resolved here). With the data of the smooth problem, reduce
S∩S′ to k points by a topological isotopy of S in M , that is given by an ambient isotopy ht, 1 ≤ t ≤ 1,
of id |M fixing a neighbourhood of k-points of S ∩ S′.

Whitney introduced a natural method for solving these problems. In the model (R2;A,A′), (this is
a straight line A cutting a parabola A′ in 2-points), we can disengage A from A′ by a smooth isotopy
with compact support (that is, fixing a neighbourhood of ∞). One eliminates thus the 2 intersection
points. We deduce that in the stabilised Whitney model,

(R4;A+, A
′
+) = (R2 × R2;A× 0× R, A′ × R× 0),

there is an isotopy with compact support that makes the plane A+ disjoint from the plane A′+,

deleting the 2 transverse intersection points between A+ and A′+.
We call a smooth (resp. topological) Whitney process, a smooth embedding (resp. a topological

embedding) of a disjoint union of copies of the model (R4;A+, A
′
+), whose image contains S ∩ S′ −

(k points). Such a procedure would clearly give the demanded isotopy to resolve the remaining
smooth problem (respectively, the remaining topological problem).

Theorem C (Casson-Freedman). In this context, after a preliminary smooth isotopy of S in M ,
(adding intersection points with S′ by finger moves, far from S ∩S′), the topological Whitney process
becomes possible.

The first step of the proof (1973–1976) is due to A. Casson. Let B be a smooth, compact 2-disc
in the boundary component of R2 − A ∪ A′. The product B × R2 is an open, embedded 2-handle
(as a closed submanifold) in the Whitney model, and disjoint from A+ ∪ A′+. In B × R2, Casson
constructed certain open sets H = B × R2 − Ω with boundary ∂H = ∂B × R2, that we call open
Casson handles. (See Section 2 for the precise definition). We are again unable to decide whether
H is diffeomorphic to B × R2 or not. Replacing B × R2 by H ⊂ B × R2 in this Whitney model
(R4;A+, A

′
+) we have an open set (R4 − Ω;A+, A

′
+), that we call the Whitney-Casson model. By a

remarkable infinite process, Casson proved:

Theorem D (Casson [Cas86], compare [Man80]). After a preliminary smooth isotopy of S in M ,
one can find in (M ;S, S′) smoothly embedded, disjoint Whitney-Casson models so that the models
contain all the points of S ∩ S′ except the k intersection points.

The theorem of Casson and Freedman now follows from the theorem that we will discuss.

Theorem E (Freedman, 1981). Every open Casson handle is homeomorphic to B2×R2. Therefore,

the Whitney model (R4;A+, A
′
+) is homeomorphic to (R4 − Ω;A+, A

′
+).

The non-compact version of Theorem B is also important.

Theorem F. Let (W ;V, V ′) be a simply connected, proper smooth 5-dimensional h-cobordism with a
finite number of ends and a trivial π1-system at each end. Then W is homeomorphic to V × [0, 1].

The difficult proof proposed by Freedman (October 1981) initiates the proof of proper s-cobordism
theorem sketched in [Sie70], while avoiding to do 2 Whitney processes, in view of the loss of differen-
tiability occasioned by Theorem C.
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This gives (compare [Fre79] and [Sie80]) the topological classification of closed, simply connected
topological 4-manifolds that admit (do they all?) a smooth structure in the complement of a point.
They are classified by their intersection form on H2, together with the Kirby-Siebenmann obstruction
x [KS77]; every unimodular forms over Z is realised, as well as every x ∈ Z2, except that for even
forms, x ∈ σ/8 ∈ Z2. Every topological 4-manifold V which is homotopy equivalent to S4 is in this
class, because V − (point) is contractible and thus V − (point) can be immersed into R4 (compare
[KS77]).

It also follows (see [Fre79, Sie80]) that every smooth homology 3-sphere V (that is, H∗(V ) ∼=
H∗(S

3)) is the boundary of a contractible topological 4-manifold W .

Report

Mike Freedman announced his proof of the topological Poincaré conjecture in August 1981 at the
AMS conference at UCSB where D. Sullivan was giving a lecture series on Thurston’s hyperbolization
theorem. His argument was very brilliant, but nevertheless watertight.

A large group of conversations then formulated certain objections, which proposed up it the state-
ment of Approximation theorem 5.1. However, Freedman already had in his head his trick of repli-
cation, and in some changes, his imposing formal proof was born.

In the meantime, R. D. Edwards had found a mistake in the shrinking arguments (see Section 4)
who is a great expert in this method. He repaired this mistake before it was announced. (I think that
he introduced in particular the relative shrinking arguments.) At the end of October 1981, Freedman
explained the details of his proof, with charm and patience, at a special conference at University of
Texas at Austin (the school of R. L. Moore) before an audience of specialists, including, in the place
of honour, Casson and R. H. Bing, creators of the two theories essential in the proof.

This paper relates the proof given in Texas, with improvements in detail added in backstage.
Already in 1981, R. Ancel [Anc81] has clarified and improved the complexities in bookkeeping of the
approximation theorem 5.1. In particular, he was able to reduce a hypothesis of Freedman demanding
that the pre-images of the singular point constitute a null decomposition, showing that S(f) countable
and of dimension 0 [Edw75] suffices. J. Walsh contributed certain simplifications to the shrinking
arguments (end of Section 4). W. Eaton suggested to me the 4-balls that help to understand relative
shrinking (Lemma 4.9 and Proposition 4.11). I proposed a global coordinate system of a Casson
handle. (It was initially necessary to embed in there, the frontier of a handle.)

My exposition (January 1982) does not seem to have changed essentially from my memories of
Texas. Only my construction of corrective 2-discs (the D(α) of Section 3.9) deviates, probably for
reasons of taste. I am indebted to A. Marin for his brotherly and insightful comments.

1. Terminology

These terminologies are used from now on except when otherwise indicated. All spaces admit a
metric, denoted generally by d. Maps are all continuous. The support of a map f : X → X is the
closure of {x ∈ X | f(x) 6= x}. The support of a homotopy, or an isotopy ft : X → X (0 ≤ t ≤ 1) is
the closure of

{x ∈ X | ft(x) 6= x for some t ∈ [0, 1]}.
For a subset A, define the closure A, the interior Å and the frontier δA, always with respect to the
understood ambient space (the largest involved). If A is a manifold, it is often necessary to distinguish

Å from its formal interior intA and δA from the formal boundary ∂A.
A decomposition D of a space X will be a collection of compact disjoint subsets in X that is usc

(upper semi continuous); the quotient space X/D is obtained by identifying each element of D to a
point (see [MV75] for a metric). The quotient map is X → X/D is closed, which is exactly equivalent
to the usc property.

The set of connected components of a space X is denoted by π0(A). If A is compact, π0(A) is at
the same time a decomposition of A for which the quotient A/π0(A) is a compact set of dimension 0
(totally discontinuous), that is identified with π0(A) as a set. If A ⊂ X, π0(A) gives a decomposition
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of X whose quotient space is denoted by X/π0(A). The endpoint compactification will appear in
Section 2.

The manifolds and submanifolds mentioned will be (unless otherwise indicated) smooth. For
manifolds, we adopt the usual convention [KS77, Essay I]; in particular, Rn is the Euclidean space
with the metric d(x, y) = |x− y|; Bn = {x ∈ Rn | |x| ≤ 1}. I = [0, 1]. A multi-disc is a disjoint union
of finitely many discs (each are diffeomorphic to B2). Similarly, for multi-handle, etc. The symbols
∼=, ≈ and ' indicate a diffeomorphism, a homeomorphism and a homotopy equivalence, respectively.

2. Casson tower and Freedman’s mitosis

We will use 2 versions B2 and D2 of the standard smooth 2-disc {(x, y) ∈ R2 | x2 + y2 ≤ 1}. The
standard 2-handle is (B2×D2, ∂B2×D2); its attaching region ∂− is ∂B2×D2; its skin ∂+ is B2×∂D2,
its core is B2 × 0. A 2-handle is a pair (H4, ∂−H) diffeomorphic to (B2 ×D2, ∂B2 ×D2). An open

2-handle is a manifold diffeomorphic to B2×D̊2. For a 2-handle (possibly open), the attaching region,
the skin and the core are defined by a diffeomorphism with the standard 2-handle (perhaps the open
one). In this paper, we can allow ourselves to omit the prefix “2-”; handles of index 6= 2 appear

rarely. Also, we write D̊2 where we ought strictly to write intD2.
A defect X in a handle (H4, ∂−H) is a compact submanifold X of H4 − ∂−H such that

(1) (X,X ∩ ∂+H) is a handle where ∂+H is the skin of the handle (H, ∂−H).
(2) (∂+H,X ∩∂+H) is (degree ±1) diffeomorphic to the Whitehead double (B2×S2, i(B2×S1))

illustrated in Figure 1:
(3) In the 4-ball H4 (with rounded corners), the core A2 of the handle (X,X ∩ ∂+H) is an

unknotted disc, that is, (H,A) is diffeomorphic to (B4, B2).

Figure 1.

A multi-defect X in a handle (H4, ∂−H) is a finite sum and union tiX(i) = X of ≥ 1 defects
X(i) such that for an identification (H4, ∂−H) with (B2 × D2, ∂B2 × D2), project to B2 the same
number of disjoint discs in intB2. A multi-handle (H4, ∂−H

4) is a disjoint, finite sum of handles. A
multiple defect X ⊂ H4 in a multiple handle is a compact subset that gives rise, by intersection, to
a multi-defect in each handle. With this data, we have:

Figure 2.

Lemma 2.1. The triad (H4 − X̊; ∂−H, δX) determines H4 and X in the following sense: if X ′

is a multi-defect in a handle (H ′, ∂−H
′) and θ : (H − X̊; ∂−H, δX) → (H ′ − X̊ ′; ∂−H

′, δX ′) is a
diffeomorphism, there exists a diffeomorphism Θ: H → H ′ extending θ.
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Sketch of proof (see [Cas86]). If we attach a multi-handle (X ′, ∂−X
′) to H−X̊ along the frontier δX,

in such a way that there exists no extension of θ to a diffeomorphism Θ: H → (H−X̊)∪X ′ = H ′, we
claim that (∂H ′, ∂−H) is diffeomorphic to (S3, solid torus) where the solid torus is tied in a non-trivial
knot. In fact, a connected sum of k non-trivial knots of the forms, 1 ≤ k ≤ |π0(X)|: �

Figure 3. Twist knots

A residual defect Ω in a handle (H4, ∂−H
4) is the intersection of a sequence

X1 ⊃ X̊1 ⊃ X2 ⊃ X̊2 ⊃ X3 ⊃ · · ·
of compact submanifolds of H4 − ∂−H4 such that, for all k, (Xk, δXk) is a multi-handle in which
Xk+1 is a multi-defect. The sequence X1 ⊃ X2 ⊃ · · · is called a russian doll of defects.

Figure 4.

A Casson handle is a pair (H4
∞, ∂−H

4
∞) such that there exists a handle (H, ∂−H) with a residual

defect Ω ⊂ H and an open smooth embedding i∞ : H∞ → H with image H − Ω, which induces a
diffeomorphism i∞| : ∂−H∞ → ∂−H. In other words, (H∞, ∂−H∞) is diffeomorphic to (H−Ω, ∂−H).

The data of (H, ∂−H), the russian doll of defects Xi and i∞ : H∞ → H, constitute what we will

call a presentation of a Casson handle (H∞, ∂−H∞). We will also denote Hk = i−1
∞ (H − X̊k) and

∂−Hk = ∂−H∞. Then, H∞ = ∪kHk. The manifold Hk is called a tower of height k, its stages are
Ej = i−1

∞ (Xj−1 −Xj) for j ≤ k. The restriction of i∞ to Hk will be denoted ik : Hk → H.
The skin of (H∞, ∂−H∞) is ∂+H∞ = i−1

∞ (∂+H); moreover, by taking intersection with ∂+H∞, we
define the skin ∂+Hk of Hk and ∂+Ek of Ek. Similarly ∂+Xk = Xk ∩ ∂+H.

A Casson handle (H∞, ∂−H∞) is never compact; we will often encounter the endpoint compacti-

fication Ĥ∞ of H∞. Recall that the endpoint compactification M̂ of a connected, locally connected
and locally compact space M is the Freudenthal compactification that adds to M the compact 0-
dimensional space Ends(M) which is the (projective) limit of an inverse system {π0(M −K) | K ⊂
M such that K is compact}.
Ĥ∞ is identified (by i∞) with the quotient of H4 obtained by crushing each connected compact of

Ω to a point. (To verify this, note that π0(Ω) with the compact topology is the (projective) limit of
an inverse system {π0(U) | U is an open subset of H containing Ω}.

We remark that Ĥ∞ is the Alexandroff compactification by a point, exactly when Ω ⊂ H is
connected, or if each successive multiple defect Xi is a single defect. The reader who feels discom-
bobulated by all the complexities to come may be interested in restricting themselves at first to this
cases, which already contains all the geometric ideas.

Ĥ∞ has all the local homological properties of a manifold; it is what we call a homology manifold.
But its formal boundary, the closure of ∂H∞, is not a topological manifold near its ends. For
example, if Ω is connected, by definition, ∂H∞ (which is homeomorphic to ∂H − ∂+Ω) is one of the
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contractible 3-manifolds of J. H. C. Whitehead [Whi35b, Whi35a], with a non-trivial π1-system at
infinity. ∂+Ω ⊂ ∂H ∼= S3 is a Whitehead compactum. In the general case, ∂+Ω is called a ramified

Whitehead compactum. Thus, (Ĥ − Ω, ∂−H) has no chance of being a topological handle. On the
other hand, H − (∂+H ∪Ω) is homeomorphic to B2×R2; this will be the central result of this paper.

Theorem 2.2 (Freedman 1981). Every open Casson handle M is homeomorphic to B2 × R2.

The proof of Theorem 2.2 starts with a result of 1978, when Freedman was able to construct a
smooth 4-manifold M without boundary which is not homeomorphic to S3 × R that is however the
image of a proper map of degree ±1, S3 × R→M (see [Fre79] and [Sie80]).

A Casson tower of height k, or more briefly Ck, is a pair diffeomorphic to (H − X̊k, ∂−H) where
X1 ⊃ X2 ⊃ · · · is a russian doll of defects in a handle (H, ∂−H).

Theorem 2.3 (Mitosis (a finite version)). Let (H6, ∂−H6) be a Casson tower C6 of height 6. There
is a C12, or (H ′12, ∂−H

′
12), such that

(1) ∂−H
′
12 = ∂−H6.

(2) H ′12 − ∂−H6 ⊂ intH6.
(3) H ′12 − H ′6 is contained in a disjoint union of balls in intH6, one ball for each connected

component.

Condition ((3)) is related to the fact that, for each Casson tower (Hk, ∂−Hk), the manifold Hk

can be expressed as a regular neighbourhood of a 1-complex, compare [Cas86]. Here is a schematic
diagram of Freedman which summarises Theorem 2.3.

Figure 5.

In Section 3, Figure 6 will represent a C6, and Figure 7 will represent a C12, etc. From the point
of view of the representation of corners on the boundary, it might be better to use Figure 8.

Figure 6.

The method of Freedman [Fre79] (compare [Sie80]) allows one to give a proof of Theorem 2.3.
However, it is slightly more detailed than the analogues in [Fre79], [Sie80]. We will not cover this
point in this paper (see [GS84] for an excellent write up of the Mitosis theorem 2.3).

Remark. Every pair (k, 2k), k > 6, in place of (6, 12) gives a statement that one can deduce without
too much pain and sorrow that we could use in place of Theorem 2.3 in what follows.

Since we are going to use Theorem 2.3 often, it is convenient to make the following:
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Figure 7.

Figure 8.

Change of notation 2.4. From now on, we write Hk and Xk in place of H6k+6 and X6k+6, k =
0, 1, 2, . . .. (Also the meaning of Ek = Hk −Hk−1, ik, etc is changed.)

Theorem 2.5 (Mitosis (an infinite version)). Let (H∞, ∂−H∞) be a Casson handle presented as
above, and let k ≥ 0 be an integer. There exists another Casson handle (H ′∞, ∂−H∞) ⊂ (H∞, ∂−H∞)
satisfying the conditions.

(1) H ′k−1 = Hk−1 if k ≥ 1.

(2) H
′
∞ −H ′k−1 ⊂ (intHk)−Hk−1.

(3) The closure H
′
∞ of H ′∞ in H∞ is the endpoint compactification of H ′∞.

This infinite version, Theorem 2.5, follows from the finite version, Theorem 2.3, by an infinite
repetition. One sufficiently shrinks balls given by Theorem 2.3 to ensure the condition ((3)) of
Theorem 2.5.

3. Architecture of topological coordinates

The ambitious construction to come applies the mitosis theorem 2.5 and elementary geometry, to
convert Theorem 2.2, that every open Casson handle is homeomorphic to B2 × R2, to two theorems
on approximation by homeomorphisms. For Casson handles, we will use the terminology of Section 2,
under the modified form in Change of notation 2.4 (by a reindexing).

The open Casson handle M will be identified to N−∂+N where (N, ∂−N) is a Casson handle (not

open). Let N̂ be the endpoint compactification of N . Subtracting from N the (topological) interior
of a collar neighbourhood of ∂+N in N , very pinched towards the ends of N , we obtain a Casson

handle (H∞, ∂−H∞) ⊂ (M,∂M) ⊂ (N, ∂−N) whose closure in N̂ is the endpoint compactification

Ĥ∞ of H∞. We fix a presentation of (H∞, ∂−H∞).

Figure 9.
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We will construct a ramified system of Casson handles in (N, ∂−N), that, in some way, explores
its interior.

3.1. Construction

For each finite sequence (a1, . . . , ak) in {0, 1} (finite dyadic sequence), we can define a presented
Casson handle (H∞(a1, . . . , ak), ∂−H∞) contained in (H∞, ∂−H∞), whose presentation consists of an
embedding i∞(a1, . . . , ak) : H∞(a1, . . . , ak) → B2 ×D2, and a russian doll of defects Xi(a1, . . . , ak),
in the standard handle B2 ×D2 such that (for (1)–(5), see the right figure of Figure 10)

Figure 10.

(1) H∞ = H∞(∅) (case k = 0) as a presented Casson handle.
(2) H∞(a1, . . . , ak, 1) = H∞(a1, . . . , ak).
(3) Hk(a1, . . . , ak, 0) = Hk(a1, . . . , ak) (recall that Hk are sets of 6-stages).

(4) The closure H∞(a1, . . . , ak, 0) in Ĥ∞ is an endpoint compactification of H∞(a1, . . . , ak, 0).

(5) H∞(a1, . . . , ak, 0)−Hk(a1, . . . , ak) ⊂ H̊k+1(a1, . . . , ak)−Hk(a1, . . . , ak).
(6) ik(a1, . . . , ak, 0) = ik(a1, . . . , ak), so Xk(a1, . . . , ak, 0) = Xk(a1, . . . , ak).
(7) The intersection of Xk+1/6(a1, . . . , ak, 0) and Xk+1/6(a1, . . . , ak) are empty, and their union

is a multiple defect in Xk(a1, . . . , ak). We also require a coherence condition on the total
russian doll assumed by (7), that is to say {Xk}, where Xk = ∪Xk(a1, . . . , ak). To formulate
it, we momentarily suspend the reindexing convention 2.4 and into Tk = ∂+Xk.

(8) (without change of notation 2.4) There exists an interval J ⊂ ∂D2 such that, for all t ∈ J ,
the meridional disc Bt = B2 × t of the solid torus B2 × ∂D meets the multiple solid tori Tk
ideally, in the sense that each connected component of Bt∩Tk is a meridional disc of Tk, that
meets Tk+1 in an ideal fashion illustrated in the left figure of Figure 10:

Execution of Construction 3.1 (by induction on k). We start with H∞(∅) = H∞. Having defined
presented handle for every sequence of length ≤ k (k ≥ 6), we define them for every sequence
(a1, . . . , ak, 1) by (2). Next, we define H∞(a1, . . . , ak, 0) by Mitosis theorem 2.5 (infinite version).
This assures that conditions (3), (4) and (5) are met. It remains to define the presentation of
the Casson handle (H∞(a1, . . . , an, 0), ∂−H∞) in such a fashion that the two last conditions (6)
and (7) are satisfied. To define i∞(a1, . . . , ak, 0), it is convenient to graft, onto ik(a1, . . . , ak), a
presentation the near part of the Casson handle (H∞(a1, . . . , ak, 0), ∂−H∞), to know the Casson

multihandle (H∞(a1, . . . , ak, 0) − H̊k(a1, . . . , ak, 0), δHk(a1, . . . , ak, 0)), where exceptionally˚and δ

denote the interior and the frontier in H∞(a1, . . . , ak, 0) rather than in N̂ . The graft is done with



POINCARÉ CONJECTURE 9

the help of Lemma 2.1. The last condition (7) is assured afterwards by an isotopy in X̊k(a1, . . . , ak).
Having (1) to (7), the reader will know how to arrange that (8) is also satisfied. �

Remark. If (a1, a2, . . .) is an infinite sequence in {0, 1}, the union

H∞(a1, a2, . . .) = ∪kH∞(a1, a2, . . . , ak)

gives a Casson handle with an obvious presentation; moreover, the closure H∞(a1, a2, . . .) is the
endpoint compactification (exercise). Thus, we have a vast collection of Casson handles in N , conve-
niently nested.

Of the system of handles (H∞(a1, . . . , ak), ∂−H∞), we especially use their skins ∂+H∞(a1, . . . , ak).
The union P 3 = ∪∂+H∞(a1, . . . , ak) of all its skin is what one calls a branched manifold in N4, since
near every point P 3−∂−H∞, the pair (N4, P 3) is C1-isomorphic (same as C∞-isomorphic, after some
work that we leave to the reader) to the product of R2 with the model of branching (R2, Y 1):

Figure 11.

where Y 1 is the union of two smooth curves (isomorphic to R1), properly embeded in R2 and which
have in common exactly one closed half-line. One observes without difficulty that the closure P of P

in N̂ is the endpoint compactification of P .
The branched manifold P splits along the singular points into compact manifolds:

Pk(a1, . . . , ak) = ∂+Ek(a1, . . . , ak) = Ek(a1, . . . , ak) ∩ ∂+H∞(a1, . . . , ak).

Thus, Pk(a1, . . . , ak) is the skin of the kth stage of (H∞(a1, . . . , ak), ∂−H∞).

3.2. Construction of the design G4 (see Figure 11)

For P 3, we construct a neighbourhood G4 in N4 called the design, which has a decomposition I of
G4 into disjoint interval, of the sort that:

(1) For every interval Iα of I, the intersection Iα ∩∂−N is Iα or the emptyset. A neighbourhood
of Iα in (G4, P 3; I) is isomorphic to the product of R2 with an open 2-dimensional model
(G2, P 1; I ′) as follows:
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Figure 12.

(2) The closure G of G in N̂ is its endpoint compactification, and hence coincides with G ∪ P .

It follows by combining, quite naively, two bicollars of genuine submanifolds of P 3. On the other
hand, we clearly are permitted to suppose that G4 contains the collar N − H̊∞ of ∂+N .

The design (G4, I) decomposed in intervals in a canonical fashion (along the 3-manifold formed
by the exceptional intervals of I having interior points on ∂G4) into genuine trivial I-bundles
I(a1, . . . , ak)×Pk(a1, . . . , ak), where I(a1, . . . , ak) is a 1-simplex and (its centre)×Pk(a1, . . . , ak) ⊂ G4

is nearly the natural inclusion Pk(a1, . . . , ak) ⊂ G4:
exactly the two embeddings are isotopic in G4 by an isotopy which moves only a collar of the

boundary of Pk(a1, . . . , ak). It is convenient to give a normal orientation to P 3 in N4 (towards the
exterior), to deduce from it the orientation of the 1-simplices I(a1, . . . , ak).

3.3. Construction of g : G4 → B2 ×D2

This g will be a smooth embedding which will reveal the structure of G4. We choose, by recurrence,
linear embeddings I(a1, . . . , ak) ⊂ (0, 1] conserving the orientation. To start, I(∅) ⊂ (0, 1] ends at 1.
Suppose now these embeddings have been defined for all sequences of length ≤ k. Then, we embed
I(a1, . . . , ak, 0) and I(a1, . . . , ak, 1) respectively on the initial third and the final third of the interval
I(a1, . . . , ak) ⊂ (0, 1].

The central third of I(a1, . . . , ak) is a closed interval that we may call J(a1, . . . , ak). The comple-

ment in I(∅) of all the open intervals J̊(a1, . . . , ak) is then a compact cantor set in (0, 1].
On the other hand, we claim that the embeddings ik(a1, . . . , ak)| : ∂+Hk(a1, . . . , ak)→ B2 × ∂D2

define together a smooth map i : P → B2 × ∂D2. Let ϕ : (0, 1] × B2 × ∂D2 → B2 × D2 be the
embedding (t, x, y) 7→ (x, ty). We will have the tendency to identify domain and codomain by ϕ.

We define g : G4 → B2 ×D2 on I(a1, . . . , ak)× Pk(a1, . . . , ak) by the rule that (t, x) 7→ ϕ(t, i(x)).
In order that definition makes sense, we have to first adjust, by isotopy, the trivialisation given by
the I-fibres I(a1, . . . , ak)× Pk(a1, . . . , ak) in (G4, I), a routine task that is left to the reader.

3.4. Construction of g0 : G4
0 → B2 ×D2

Let G4
0 be the union of G4 and a small collar neighbourhood C4 of ∂−N in N that respects δG4 (see

the figure for Section 3.2) Let us extend g to an embedding g0 : G4
0 → B2 × D2. By uniqueness of

collars, we can arrange g and g0 so that g0 sends C4 − G̊4 to (B2 − λB2)× µD2, where λ ∈ (0, 1] is
near to 1 and µ to the initial point of I(∅). This completes the construction of g0 : G4

0 → B2 ×D2.

Looking near g0 and its image, we will claim that we have completely described the closure G4
0 of G4

0

in N̂4.

3.5. The image g0(G4
0) ⊂ B2 ×D2

Some notations again (see the two figures below). T (a1, . . . , ak) ≡ Tk(a1, . . . , ak) = ∂+X(a1, . . . , ak),

a multi-solid torus ⊂ B2 × ∂D2. T∗(a1, . . . , ak) = ϕ(J(a1, . . . , ak) × T (a1, . . . , ak)) ⊂ B2 × D̊2,
a radially thickened copy of T (a1, . . . , ak), called a hole. B∗ = λB2 × µD2 (see definition of g0),
called the central hole. Fk = ∪{ϕ(I(a1, . . . , ak−1) × T (a1, . . . , ak)) | k fixed}. The frontier δFk,

k ≥ 2, are indicated in dashed lines in the right hand figure below. (B2 ×D2)0 = B2 ×D2 − B̊∗ −
∪{T̊∗(a1, . . . , ak)}, called the holed standard handle. W0 = ∩kFk, a compactum in (B2 ×D2)0. With
these notations, we claim that the image g0(G4

0) is (B2 ×D2)0 −W0.
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Figure 13.

3.6. The main diagram

The commutative diagram below gives an overview of the construction to come. The elements will be
constructed in order W0, g1, D′, g2, D, g3, D+, f . The proof that (B2 × D̊2)/D+ is homeomorphic

to B2 × D̊2 (by the methods of Bing) is reserved to Section 4. The proof that f is approximable by
homeomorphisms is postponed to Section 5.

3.7. Construction of W0 and g1

W0 is the decomposition of the compact set (B2 × D2)0, where non-degenerated elements are the
connected components W of the compact set W0 ⊂ (B2 × D2)0. Each W ∈ W0 is a Whitehead
compactum in a single level ϕ(t × B2 × ∂D2). We check naively that the inclusion (B2 × D2)0 −
W0 → (B2 ×D2)0/W0 induces a homeomorphism (B2 ×D2)0 −W0

∧

→ (B2 ×D2)0/W0. We already

know that Ĝ0 is identified with G0 ⊂ N̂ . We define the homeomorphism g1 as a composition of
homeomorphisms:

g1 : G0 −→ Ĝ0
ĝ0−−→ (B2 ×D2)0 −W0

∧

−→ (B2 ×D2)0/W0.



12 LAURENT SIEBENMANN

3.8. Construction of D′ and g2

Let D′ be the decomposition of B2×D2 given by the B∗, T∗(α) (α can be any finite dyadic sequence),

and the elements of W which are disjoint from them. To define g2 : N̂ → (B2 × D2)/D′, we must

extend q1g1 : G0 → (B2 × D2)/D′ to each connected component Y of N̂ − G0. Its frontier δY is
identified by g1 to the quotient in (B2 × D2)0/W0, either of ∂B∗, or of a boundary of a connected
component of a hole T∗(a1, . . . , ak). By definition, g2(Y ) is the image in (B2×D2)/D of this boundary.
It is easy to check the continuity of g2.

Next, g3 and D in the main diagram are defined by restriction. The design G4 has led as inexorably
to define g3 : M4 → B2 × D̊2/D, which compares the open Casson handle M4 with a very explicit

quotient of the open handle B2 × D̊2.
The decomposition D which specifies this quotient has non-cellular elements, that is the holes

T∗(a1, . . . , ak), each of which has the homotopy type of a circle. Therefore the quotient mapB2×D̊2 →
B2 × D̊2/D is certainly not approximable by homeomorphisms. One can also check that the Cech
cohomology Ȟ2 of the quotient is of infinite type.

The construction of D+ below repairs this terrible defect; it will be constructed by hand; D+ will
be less fine than D, which will enable us to define f = q3 ◦ g3 without effort.

3.9. Construction of D+

We set W = W0 ∩ (B2 × D̊2) = W0 − (B2 × ∂D2). Its connected components define a decomposition

W of B2 × D̊2. We have known how to show for fifty years that B2 × D̊2/W is homeomorphic to

B2 × D̊2, see Section 4.
For the need of the next paragraph, the quotient (B2× D̊2)/D+ must be a quotient of B2× D̊2/W

by a decomposition whose elements are the connected components of

∪{q(T∗(α)) ∪ E(α) | α a finite dyadic sequence}.
Here {E(α)} is a collection of disjoint, topologically flat multi-2-discs such that for each finite dyadic
sequence α, the intersection E(α) ∩ (∪α′q(T∗(α′))) is:

(1) the boundary ∂E(α); and
(2) a multi-longitude of ∂T∗(α) far from W (each connected component of q(T∗(α)) ∪ E(α) is

then contractible).

Moreover, we want that the diameter of the connected components of E(a1, . . . , ak) tends towards
0 (on each compact set) as k → ∞. Section 4 does not demand any more than this and visibly,
{E(α)} specifies D+.

The specification of {E(α)} is unfortunately tedious. E(α) will be the faithful image q(D(α)) of

a multi-disc in B2 × D̊2. For fundamental group reasons, the multi-disc D(α) is obliged to meet W ,
but, to assure flatness of q(D(α)) (proved in Section 4), it must be a very gently meeting, permitted
by (7) and (8) of Construction 3.1.

We have Tk = ∪αTk(α); conditions (6) and (7) of Construction 3.1 assure that Tk is a multi-solid
torus of which certain connected components constitute Tk(α). We have ∩kTk = p(W ), which is a
ramified Whitehead compactum in B2 × ∂D2.

To start, we specify (simultaneously and independently) in B2 × ∂D2, (topologically) immersed,
locally flat discs D′(α) which will be the projection p(D(α)) = D′(α). We assume easily the two
properties (a) and (b), where (b) uses (8) of Construction 3.1.

(a) D′(a1, . . . , ak) is a disjoint union of immersed discs in Tk−1, with as their only singularities, an
arc of double points for each, above Tk(a1, . . . , ak). The boundary ∂D′(a1, . . . , ak) is formed
from one longitude of each connected component of ∂Tk(a1, . . . , ak). The double points of

D′(a1, . . . , ak) are outside T̊k(a1, . . . , ak).

(b) For each l ≥ k, the intersection D̊′(a1, . . . , ak)∩Tl is a multi-disc (embedded in Tk(a1, . . . , ak))
of which each connected component D0 is a meridional disc of Tl that meets the solid tori of
the next generator (Tl+1/6 with our revised indexing of Change of Notation 2.4) ideally (see
the left hand figure of Figure 10).
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Figure 14.

By resolving the double points of D′(α), which we have to embed in (0, 1)×B2 × ∂D2 ⊂
B2 ×D2, specifying the first coordinate by a convenient function ρ(α) : D(α)→ (0, 1).

We will embed a single D(α) at a time (following some chosen order). We embed first
D(a1, . . . , ak) closer and closer (by a secondary induction). Some notations:

T+
∗ (a′1, . . . , a

′
l) = J(a′1, . . . , a

′
l)× T (a′1, . . . , a

′
l−1),

F ∗l = p−1(p(Fl)) = (0, 1)× Tl,
W+ = p−1(p(W )) = (0, 1)× (∩kTk).

One can easily check that, for D(a1, . . . , ak), the properties (c) and (d) for l > k, of which
(d) for l is only provisional.

(c) D(a1, . . . , ak) is embedded, is contained in I(a1, . . . , ak−1) × T (a1, . . . , ak−1), and is disjoint
from B∗ and from ∪{T+

∗ (α′) | α′ 6= (a1, . . . , ak)}. The boundary ∂D(a1, . . . , ak) is in a signle

level t×B2 × ∂D2, where t ∈ J̊(a1, . . . , ak).
(d) Each connected component of the multi-disc F+

l ∩D(a1, . . . , ak) is in a single level t×B2 ×
∂D2; this level is disjoint from each box T∗(α

′), and does not contain any other connected
component of F+

l ∩D(a1, . . . , ak).
For l = k and k + 1, here are the illustrations of the graph of ρ in a simple case.

We observed that in pushing D(a1, . . . , ak) vertically, as small as we want, and only on

F̊+
l ∩D(a1, . . . , ak), we can pass from (d) for l to (d) for l+ 1, without losing (c). Therefore,

without losing (c), we can pass to the property:
(e) For each integer l > k, the connected component of the multi-disc F+

l ∩D(a1, . . . , ak) project
on as many disjoint intervals of radius in (0, 1).
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This condition assures that, for all W ∈ W, the intersection W ∩ D(a1, . . . , ak) is an intersection
of discs (and so cellular). Therefore q(D(a1, . . . , ak)) is certainly a disc (compare Theorem 4.4) in
Section 4, we will prove by hand that it is a flat disc. If, before D(a1, . . . , ak), we have already
defined (for the main induction) a finite collection of discs D(α1), . . . , D(αn), we follow the same
construction as above, always staying in a neighbourhood of T+

∗ (a1, . . . , ak) (guaranteed by (c)),
disjoint from D(α1) ∪ · · · ∪D(αn) and for all elements of W that touch D(α1) ∪ · · · ∪D(αn).

Thus the family {D(α)} of disjoint 2-discs is defined by a double induction and verifies the prop-
erties (a), (b), (c) and (e) with p(D(α)) = D′(α). Next {D(α)} defines D+ as already indicated. One

easily checks all the properties wanted for q(D(α)) = E(α) in (B2 × D̊2)/W, except local flatness of
E(α) which is postponed to Section 4.

3.10. End of the proof that M is homeomorphic to B2 × D̊2 (modulo Sections 4 and 5)

Accepting from Section 4 that (B2× D̊2)/D+ is homeomorphic to B2× D̊2, we show modulo Section

5 the approximability by homeomorphisms of f : M4 → (B2 × D̊2)/D+ is the following fashion. We
form the commutative diagram

intM4 (B̊2 × D̊2)/D+ B̊2 × D̊2 S4 −∞

S4 S4

//f |
� _

��

//≈ //≈
� _

��
//

f∗

where the inclusion intM ⊂ S4 exists since M embedds in B2×D2 (the experts also know that intM
is diffeomorphic to R4 [Cas86]), and where f∗(S

4 − intM4) =∞. Therefore,

S(f∗) = {y ∈ S4 | f−1
∗ (y) 6= a point}

is visibly a contractible set.

Also S(f∗) is nowhere dense. (Here is a proof. The restriction f∗| is same as q3 ◦q1 ◦g1| : M ∩G
4

0 →
(B2 × D̊2)/D+ is already surjective and f−1

∗ (S(f∗)) is contained in the nowhere dense set of M ∩G4

0

given by (∂G0) ∪ (ends of G4
0) ∪ g−1

1 (∪αE(α)).)
Therefore, according to Theorem 5.1, the map f∗ is approxmiable by homeomorphisms. Next,

by Proposition 4.2 (localisation principle), the restriction intM4 → (S4 −∞) is also approximable
by homeomorphism. Finally, by Proposition 4.3 (globalisation principle), the map f : M → (B2 ×
D̊2)/D+ is approximable by homeomorphisms. Thus Theorem 2.2 is proved modulo Sections 4 and
5.

Remark. S(f∗) ⊂ S4 is in fact a compactum of dimension ≤ 1, because the union of a contractible
set S(f∗) with a set of dimension 0, that is the ends of G4

0 which are not in the frontier of a connected

component Y of M4 − G4
0. For reasons of cohomology, dimS(f∗) ≥ 1; Therefore it is a compactum

of dimension exactly 1.

4. Bing shrinking

We need to show that the space B2 × D̊2/D+ defined in Section 3 is homeomorphic to B2 × D̊2.
The necessary techniques come from a series of articles of R. H. Bing from the 1950s (see especially
[Bin52, Bin57, Bin59]), which made his reputation as a great virtuoso of geometric topology.

We consider proper surjective map f : X → Y between metrisable, locally compact spaces X, Y .
Let D = {f−1(y) | y ∈ Y } be the decomposition associted to f . When is f (strongly) approximable
by homeomorphisms, in the sense that for all open covering V of Y , V-neighbourhood

N(f, V ) = {g : X −→ Y | for all x ∈ X, there exists V ∈ V such that f(x), g(x) ∈ V }.
contains a homeomorphism?

Since f induces a homeomorphism ϕ : X/D → Y , we see easily that f is approximable by home-
omorphisms if and only if one can find maps g : X → X such that D = {g−1(x) | x ∈ X} and that
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f ◦ g approxmates f (in effect, ϕ translates g into a homeomorphism g′ : Y → X). This observation
makes the following theorem plausible.

Theorem 4.1 (Bing shrinking criterion). f is approximable by homeomorphism if and only if, for
every coverings U of X and V of Y , there exists a homeomorphism h : X → X such that h(D) < U ,
and for all compact D ∈ D, D and h(D) are f−1(V)-near in the sense that there exists an f−1(V ) ∈
f−1(V) that contains D ∪ h(D).

We then say that D is shrinkable. We can show a proof by hand [Cha76], or by Baire category
[Tor81], [Mor62] (the idea is to find a homeomorphism h : X → Y that converges towards g that
determines D). The proof also gives:

Remark. In Theorem 4.1, if h respect (or fix) a closed set A ⊂ X, then f is approximable by
homeomorphisms that send A on f(A) (or which coincide on A with f), and reciprocally.

Proposition 4.2 (Localisation principle). If f : X → Y is approximable by homeomorphisms and Y
is a manifold (or Y satisfies the principle of deformability by homeomorphisms coming from [EK71],
D1 of [Sie72b]), then, for each open set V of Y , the restriction fV : f−1(V )→ V of f is approximable
by homeomorphisms.

Proof (indication). To approximate fV , we combine (by the principal D1) a series of approximations
of f ; compare [Sie72b, Section 3.5]. I believe that this lemma is not in the literature because, for
dimension 6= 4, we have stronger results [Sie72a, Edw77]. However, upon reflection, the complicated
argument of [Sie72a] works. In each case that interests us, the reader will be able to find an ad hoc
proof that is easier. �

Counterexample. This principle is false for X and Y are Cantor×[0, 1] = 2N × [0, 1], and f =
g × id[0,1] where g(1, a2, a3, . . .) = (a2, a3, . . .), g(0, a2, a3, . . .) = (0, 0, 0, . . .).

Proposition 4.3 (Globalisation principle). Let f : X → Y be a proper map such that, for an open
set V ⊂ Y , the restriction fV : f−1(V ) → V is approximable by homeomorphisms. Then, f is
approximable by proper maps g such that

(1) g−1(V ) = f−1(V ),
(2) gV : g−1(V )→ V is homeomorphism, and
(3) g = f on X − f−1(V ).

This principle is easy to establish, because if V is the covering of V by open balls centred on y ∈ V
and of radius inf{d(y, z) | z ∈ Y − V }, then every map γ : f−1(V )→ V that is in N(fV ,V), extends
by f to a map g : X → Y . In the very special case that D is π0(K) for a compact set K ⊂ X, the
Bing shrinking criterion simplifies as follows: (Then, D consists of connected components of K and
the image of K in X/D is 0-dimensional and is identified with π0(K).)

Theorem 4.4 (Criterion). Under these conditions, D is shrinkable if for all ε > 0 and for all open
D-saturated U of X such that U ∩K is compact, there is a homeomorphism h : X → X with support
in U (respectively A ⊂ X) such that h(K ∩U) is expressed in a finite disjoint union of compact sets,
each of diameter < ε.

This condition, modulo localisation principle (Proposition 4.2), is clearly necessary.
For all ε > 0, one can consider Dε = {D ∈ D | diamD ≥ ε}. We say that ∪D∈DεD is a closed

subset of X. Here is a remarkable but disturbing example where D is null, Dε is shrinkable for any
ε > 0, but D is not shrinkable. The elements of D are the connected components of a compact set
X = ∩nFn where F0 and F1 are as illustrated. This image is suitably replicated in each solid torus;
Fn is then 2n solid tori. Each D ∈ D is clearly cellular, hence Dε is shrinkable by Lemma 5.2. But,
with the help of cyclic covers, one can check that D is not shrinkable (see [Bin62, AB67]).

There are thankfully properties of individual elements, a little stronger than cellularity, which
discards this sort of example. For a compact A ⊂ X, we consider the property R(X,A): For each
ε > 0, for every null decomposition D of X containing A, and for all neighbourhoods U of A, there is
a map f : X → X with support in U that shrinks at least A, (that is, f(A) is a point and f |U : U → U
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Figure 15.

is approximable by homeomorphisms), such that, for all D ∈ D, diam f(D) ≤ max(diamD, ε). If D
is fixed in advance, we call the (weaker) property R(X,A;D).

Observation. For every neighbourhood U of A, we haveR(X,A) is equivalent toR(U,A). Moreover,
R(X,A) is independent of the metric.

Proposition 4.5. If D is null, and R(X,D;D) is satisfied for all D ∈ D, then D is shrinkable.

Proof. The proof is an edifying exercise. �

Proposition 4.6. R(X,A) is satisfied if A is a topological flat disc of any codimension in the interior
of the manifold.

Proof of Proposition 4.6. This is R(Rn, Bk) for k ≤ n. The proof of R(R2, B1) which is indicated by
Figure 16.

Figure 16.

In (a), every element of D that meets the big rectangle has already diameter < ε/4; if D ∈ D meets
a gap between successive rectangles, it is disjoint from the rectangle after. We set f(B1) = 0, and
f = id outside the biggest rectangle (which is in U); f is linear on each vertical interval in a rectangle
of (b) and also linear on each 1-cell of the rectangular cellulation in (b) of (big rectangle−B1);
Moreover, p ◦ f = p where p is the projection to the y-axis (the Rn−k normal to Bk); Finally, the size
of the image of each of the vertical rectangle is < ε/4. �

We consider the Whitehead pair (B2 × S1, j(B2 × S1)) = (T, T ′), and the thickened pair (R ×
T, [0, 1]× T ′).

Lemma 4.7. For ε > 0, there exists an isotopy ht (t ∈ [0, 1]) of id |R×T with compact support in
(−ε, 1 + ε)× intT such that, we have diam(h1(t× T ′)) < ε and h1(t× T ′) ⊂ [t− ε, t+ ε]× T for all
t ∈ [0, 1].

Idea of a proof of Lemma 4.7. It is suggested by Figure 18. �

By this lemma, one can shrink many decompositions related to Whitehead compacta. For ex-
ample, let W ⊂ R3 be a Whitehead compactum and let D = {t ∈ W | t ∈ [0, 1],W ∈ W} be the
decomposition I ×W of R× R3 = R4. Then D is shrinkable by Lemma 4.7 applied to the solid tori
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Figure 17.

Figure 18.

T, T ′, T ′′, . . . of intersection W. Therefore R4/D is homeomorphic to R4. Moreover, by Proposition
4.2 (localisation principle), we have (0, 1) × R3/W is homeomorphic to (0, 1) × R3. Hence we have
the following celebrated fact.

Theorem 4.8 (Celebrated fact [AR65]). R× (R3/W) = R4.

This is a result of Andrews and Rubin [AR65] in 1965, proved after analogous results, but more
difficult, of Bing [Bin57] in 1959, which is a curious anachronism. There is a good explanation!
A. Shapiro, at the time when he succeeded in turning S2 inside out in S3 by a regular homotopy,
compare [FM80], had also established Theorem 4.8. In any cases, Bing tells me that D. Montgommery
had communicated to him this claim without being able himself to apply it to more than an easier
argument (see Lemma 4.9) showing R× (S3−W) is homeomorphic to R4, compare [Bin59]. How the
putative proof of Shapiro from the 50s seems to have disappeared without a trace.

To establish the flatness of discs {E(α)} constructed in Section 3.9, we will also need a lemma that
is easier than Lemma 4.7, treating again the Whitehead pair (T, T ′). Let D be a meridional disc of
T that cuts T ′ transversally in 2 discs. Thus:

Figure 19.

Lemma 4.9. With this data, we can find in R×T a topological 4-ball B, such that intB ⊃ [0, 1]×T ′
and B ∩ (R×D) is an equatorial 3-ball of the form (interval)×D0 ⊂ R×D.

Proof of Lemma 4.9. This has nothing to do with the proof of Lemma 4.7! We find B easily from a
2-disc immersed in T like in Figure 20 (compare Section 3.9). �
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Figure 20.

To establish that (B2 × D̊2)/D+ is homeomorphic to B2 × D̊2, we will now use the construction
of Section 3.

Proposition 4.10. The decomposition W of B2 × D̊2 is shrinkable.

Proof of Proposition 4.10. We apply Theorem 4.4, Lemma 4.7 (or Lemma 4.9, without exploiting the
last condition of Lemma 4.9). For this, it is convenient to remark first that for all open W-saturated
U in B2 ×D2, W ∩U is contained in an open subset of U that is a disjoint union of open sets of the
form I̊ ′ × T̊ (a1, . . . , ak), where I ′ is an interval. �

Our next goal is the flatness of the discs E(α) = q(D(α)) ⊂ (B2× D̊2)/W. Let W(α) = {w ∈ W |
w ∩D(α) 6= ∅}, and let W (α) = ∪W(α).

Proposition 4.11. W(α) is shrinkable respecting D(α). Therefore, the quotient qα(D(α)) of D(α)

is flat in (B2 × D̊2)/W(α).

Proof of Proposition 4.11. We apply Lemma 4.9 and the relative criteria (Theorem 4.4). For every

openWα-saturated U of B2× D̊2, the intersection Wα∩U is trivially contained in an open set which,
for some integer l, is a disjoint union of open sets of the form I̊ ′ × T̊ ′ ⊂ U , where T ′ is a connected
component of multiple solid tori Tl(b1, . . . , bl) and i′ is an interval.

The condition (d) of Section 3.9 allows us to choose these sets so that in addition, for each:

(∗) D(α)∩ (I ′ × T ′) is a single 2-disc, which is projected onto a meridional disc D of T ′ which is
also a connected component of D′(α) ∩ T ′, see Section 3.9.

By the condition (b) of Section 3.9 the meridional disc D ideally chopped off Tl+1/6∩T ′, so Lemma

4.9 gives us disjoint 4-balls B1, . . . , Bs in I̊ ′ × T̊ ′, such that

(1) each intersection Bi ∩D(α) is a diametral 2-disc and not knotted in Bi, and

(2) B̊1 ∪ · · · ∪ B̊s contains the compact set W+ ∩ (I̊ ′ × T̊ ′) ⊃Wα ∩ (I̊ ′ × T̊ ′).
For all compact K in B̊i and all ε > 0, we can easily find a homeomorphism h : Bi → Bi with
compact support which respects B̊i ∩D(α) and such that diamh(K) < ε. The criteria of Theorem
4.4 (respecting D(α)) is therefore satisfied. �

Proposition 4.12. q(D(α)) = E(α) is flat in (B2 × D̊2)/W.

Proof of Proposition 4.12. The open set Uα = (B2 × D̊2) − (Wα ∪ D(α)) is clearly homeomorphic

to (B2 × D̊2)/Wα − qα(D(α)) by qα. Therefore, by Propositions 4.2 and 4.3, the quotient map

q′α : (B2 × D̊2)/Wα → (B2 × D̊2)/W is approximable by homeomorphisms fixing q′α on the flat disc
qα(D(α)). Therefore, q(D(α)) = q′(α) ◦ q(α)(D(α)) is flat. �

We now propose to finish by showing that the quotient maps:

B2 × D̊2 ≈−−→ (B2 × D̊2)/W p1−−→ ((B2 × D̊2)/W)/{E(α)} p2−−→ (B2 × D̊2)/D+

are approximable by homeomorphisms.

Proposition 4.13. p1 is approximable by homeomorphisms.
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Proof of Proposition 4.13. This follows from Propositions 4.12, 4.6 and 4.5. �

To approximate p2 by homeomorphisms, we need few preparations. According to Propositions
4.13 and 4.10, there is a shrinking map r : B2 × D̊2 → B2 × D̊2 inducing the same decomposition as
the quotient map ((B2 × D̊2)/W)/{E(α)}; we can identify the domain of p2 with B2 × D̊2 by r.

The decomposition P constitutes of the pre-images p−1
2 (y) = {a point} is the countable collection

of natural collection of connected components of holes T∗(α) and B∗, which now identify r(T∗(α))

and r(B∗) ⊂ B2 × D̊2. We observe that P is null. The quotient map λB2 × µD2 = B∗ → rB∗
shrinks the Whitehead compactum W(∂B∗) = {w ∈ W | w ⊂ B∗}, and these compact sets lie in
λB2 × µ∂D2 ⊂ ∂B∗.

Proposition 4.14. r(∂B∗) has a bicollar neighbourhood V in B2×D̊2, that is, (V, r(∂B∗)) ≈ (R, 0)×
r(∂B∗).

This will results the following proposition.

Proposition 4.15. The quotient of ∂B∗ in (B2 × D̊2)/W(∂B∗) admits a bicollar neighbourhood.

Proof of Proposition 4.15. This is equivalent to the existence of a bicollar neighbourhood in (R ×
∂B∗)/(0 ×W(∂B∗)). However, by (slightly generalised) Theorem 4.8 and Propositions 4.2 and 4.3,
the quotient map of the latter space on (R×∂B∗)/(R×W(∂B∗)) is approximable by homeomorphisms,
fixing the quotient of 0× ∂B∗. �

Proof of Proposition 4.14. The map r is factorised into r′′ ◦ r′ where r′ factors through W(∂B∗).

However, Proposition 4.15 ensures a bicollar neighbourhood of r′(∂B∗) in (B2×D̊2)/W(∂B∗). Propo-
sitions 4.2 and 4.3 ensure that r′′ is approximable by homeomorphisms fixing r′(∂B∗). Therefore, the

pair ((B2 × D̊2)/W(∂B∗), r
′(∂B∗)) (with the bicollar) is homeomorphic to (B2 × D̊2, r(∂B∗)). �

Proposition 4.16. R(B2 × D̊2, r(B∗);P) is satisfied.

Proof of Proposition 4.16. Given an open neighbourhood U of r(B∗), there exists, by Proposition

4.14, a homeomorphism h : B2 × D̊2 → B2 × D̊2 with compact support in a bicollar V of r(∂B∗)

in U , such that h(r(B∗)) ⊂ r(B̊∗). Since r(B̊∗) is homeomorphic to R4, there exists a map g with

support in r(B̊∗) and approximable by homeomorphisms such that g ◦ h ◦ r(B∗) is a point in r(B̊∗).

Let f = g ◦ h : B2 × D̊2 → B2 × D̊2. By uniform continuity on the compact support F ⊂ r(B∗) ∪ V
of f , we know that, for a given ε > 0, there exists δ > 0 such that for all set E ⊂ B2 × D̊2 of
diameter less than δ, the diameter of f(E) is less than ε. By Lemma 4.17, there exists a stretch

homeomorphism θ : B2× D̊2 fixing r(B∗) and support in V such that, for all P ∈ P distinct from B∗
such that θ(P ) ∩ F 6= ∅, we have diam θ(P ) < δ. Then f = f0 ◦ θ satisfies R(B2 × D̊2, B∗;P). �

Lemma 4.17 (Stretch lemma). Let l be a null decomposition X× [0,∞) where X is compact and all
elements of l is disjoint from X×0. For all ε > 0, there exists a homeomorphism with compact support
ϕ : [0,∞)→ [0,∞) such that Φ = ϕ× idX satisfies that for all E ∈ l, such that Φ(E)∩(X× [0, 1]) 6= ∅,
we have diam(Φ(E)) < ε.

Proof of Lemma 4.17 (indication). Figure 21 completes the proof. �

Figure 21.

All elements of P distinct from r(B∗) is of the form r(T ′∗(α)) where T ′∗(α) is a connected component
of a torus T∗(α). Following the method of the proof of Proposition 4.16, we establish similarly the
following proposition.
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Proposition 4.18. R(B2 × D̊2, r(T ′∗(α));P) is satisfied.

Proof of Proposition 4.18 (indications). The quotient of T ′∗(α) = J(α)×T ′(α), by the longitude l(α)
that is in D(α), is a cone whose centre is the quotient of l(α), and the base is a solid torus. δr(T ′∗(α))−
r(l(α)) has a bicollar neighbourhood in B2×D̊2, compare Proposition 4.13. The accumulation points
of elements P 6= a point of P are the centre r(l(α)) and a compact set r(W ∩ ∂T ′∗(α)) far from
r(l(α)). �

Proposition 4.19. p2 is approximable by homeomorphisms and hence B2 × D̊2/D+ ≈ B2 × D̊2.

Proof. Apply Propositions 4.18, 4.16 and 4.5. �

5. Freedman’s approximation theorem

Theorem 5.1 (Freedman’s approximation theorem). Suppose that X and Y are homeomorphic to
the n-sphere. Let f : X → Y be a surjective, continuous map such that the singular set S(f) = {y ∈
Y | f−1(y) 6= a point} is nowhere dense and at most countable. Then, f can be approximated by
homeomorphisms.

Remark. For all dimensions 6= 4, there exist much stronger approximation theorems [Arm71, Sie70,
Edw77]. Therefore, in dimension 4, the problem of generalising Theorem 5.1 clearly remains open.

In the case of S(f) is finite, this theorem is well-known since it constitutes the essential part of
the celebrated Schönflies theorem which was established around 1960 by B. Mazur, M. Brown and
M. Morse.

Recall that a compact set A in a topological n-manifold M (without boundary) is cellular if each
neighbourhood of A contains a neighbourhood which is homeomorphic to Bn.

Lemma 5.2. Let A be a compact, cellular set in the interior intM of a manifold M . Then, the
quotient map q : M → M/A can be approximated by homeomorphisms which are supported in an
arbitrarily given neighbourhood of A.

Compare the Bing shrinking criterion, Theorem 4.1 [Bro60]. A direct proof shrinks A gradually to
a point.

Proof of Theorem 5.1 if S(f) is a point. Let y0 = S(f) and A = f−1(y0), we have that X − A is
homeomorphic to Rn. Since X is homeomorphic to Sn, it follows that A is cellular in X (exercise).
Then, we obtain approximations by applying Lemma 5.2. �

In the setting of Freedman’s ideas, the case where S(f) is n points, n ≥ 2, is already as difficult
as Theorem 5.1. However one can consult [Bro60, Dou61] for an easy proof. We recall the Schönflies
theorem.

Theorem 5.3 (Schönflies theorem). Let Σn−1 be a topologically embedded (n− 1)-sphere in Sn such
that there is a bicollar neighbourhood N of Σ in Sn, that is, (N,Σ) is homeomorphic to (Σ×[−1, 1],Σ×
0). Then the closure of each of the two components of Sn − Σ is homeomorphic to the n-ball Bn.

Proof of Theorem 5.3 (starting from Theorem 5.1 for S(f) consists of 2-points). Let X1 and X2 be

two connected components of Sn − N̊ and W1 and W2 be the closures of connected components
of Sn − Σn−1 containing X1 and X2, respectively. It is necessary to show that W1 and W2 are
homeomorphic to Bn.

Shrinking X1 and X2, we obtain a quotient map

f : Sn −→ Sn/{X1, X2} ≈ (Σ× [−1, 1]/{Σ× 0,Σ× 1} ≈ Sn

that is approximable by homeomorphisms from Theorem 5.1 (the case of S(f) is two points). So X1

and X2 are cellular in Sn. Apply Lemma 5.2 to Xi ⊂ W̊i, we deduce that

Wi −→Wi/Xi ≈ Σ× [0, 1]/{Σ× 1} ≈ Bn

is approximable by homeomorphisms. �
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Observation. The case of Theorem 5.3, where we know in advance that Σ bounds an n-ball in Sn,
already arises from the case of Theorem 5.1 where S(f) = {1 point} proved above. Freedman uses
this case.

To prove Theorem 5.1, Freedman introduced a nice trick of iterated replication of the approximation
map, which vaguely reminds me of the arguments of Mazur [Maz59]. This trick leads us to leave the
category of continuous maps and to instead work in the less familiar realm of closed relations. It was
during the seventies that closed relations imposed themselves for the first time on geometric topology;
they surfaced implicitly in a very original article by M. A. Stanko [Sta73] and have become essential
since: I believe that it would be a herculean task to prove, without closed relations, the subsequent
theorem of Ancel and Cannon [AC79] that any topological embedding Sn−1 → Sn, n ≥ 5, can be
approximated by locally flat embeddings.

Definition. A closed relation R : X → Y between metrisable spaces X and Y is a closed subset R
of X × Y . If S : Y → Z is a closed relation, the composition S ◦R : X → Z is

S ◦R = {(x, z) ∈ X × Z | there is y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S},
which is also closed if Y is compact. Therefore the collection of closed relations between compact
spaces is a category.

A continuous map f : X → Y gives a closed relation {(x, f(x)) | x ∈ X} (the graph of f) which
we still call f . Reciprocally, provided that Y is compact, a closed relation R : X → Y is the graph of
a continuous function (which is uniquely determined) if R ∩ x× Y is a point for all x ∈ X.

Remark. The natural function [0, 1)→ R/Z is continuous and bijective; the inverse is discontinuous,
but the graphs of two are closed.

By extending usual notions for continuous functions, for A ⊂ X and B ⊂ Y , we have

(1) the image R(A) = {y ∈ Y | there exists x ∈ A such that (x, y) ∈ R},
(2) the restriction R|A : A→ Y is the closed subset R ∩A× Y in A× Y ,
(3) the inverse R−1 : Y → X such that {(y, x) ∈ Y ×X | (x, y) ∈ R}.

Remark. R−1 is the inverse of R in the categorical sense if and only if R is the graph of a bijection
function (if and only if the categorical inverse exists).

To exploit an analogy between a function X → Y and a relation R : X → Y , we will at any time
assimilate R to the function that associates for each point x ∈ X to a subset R(x) ⊂ Y .

Proof of Theorem 5.1. Any submanifold of codimension 0 that is introduced will be assumed to be
topological and locally flat. Let N be a neighbourhood of f in X × Y . The theorem asserts that
there exists a homeomorphism H : X → Y such that H ⊂ N .

By removing a small n-ball D ⊂ Y − S(f) from Y and removing its pre-image f−1(D) from X,
we see that it is permissible to adopt the following.

Theorem 5.4 (Change of data). Suppose X and Y are homeomorphic to Bn rather than Sn. Let
f : X → Y be a surjective, continuous map such that the singular set S(f) = {y ∈ Y | f−1(y) 6=
a point} is nowhere dense and at most countable and S(f) ⊂ intY . Then f can be approximated by
homeomorphisms.

It is easy to see that Theorem 5.4 implies Theorem 5.1 using the special case of Theorem 5.3
(Schönflies theorem) where Σn−1 bounds a ball (see observation after Theorem 5.3).

The first step of an inductive construction of H is to apply the following proposition to the triangle

X Y

Y

//f

��f �� id

Moreover, the neighbourhood N of Proposition 5.5 becomes N the above; and L becomes Y .
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Suppose that X and Y are homeomorphic to Bn. A relation R : X → Y is called good if it is
closed, and satisfying the following conditions.

(1) R ⊂ X × Y is projected onto X and onto Y .
(2) R(x) is not a singleton set for at most countably many points in X and these exceptional

points constitute a nowhere dense set contained in intX. The same holds for R−1.

It is said that a good relation R′ : X → Y is finer than R if R′ ⊂ R ⊂ X × Y .

Proposition 5.5. Given a triangle of good relations (which is eventually commutative)

X Y

Z

//R

��f �� g

where X, Y and Z are homeomorphic to Bn, and f , g are in addition continuous functions; a
neighbourhood N of R in X×Y ; and L ⊂ Z an open subset (called the gap). We impose the following
conditions.

(a) R ⊂ (f−1(L)× g−1(L))∪ (f−1(Z −L)× g−1(Z −L)); it is inevitable if the triangle switches.
(b) R = g−1 ◦ f on f−1(L).
(c) R is given by the intersection graph of a homeomorphism f−1(Z − L)→ g−1(Z − L).
(d) The singular sets S(f) and S(g) are separated on L, that is, there are two open disjoint sets

U and V which contain S(f) ∩ L and S(g) ∩ L, respectively.

Then, for all ε > 0, we can modify the three data g, R, L in g∗, R∗, L∗ so that in addition to the
same conditions above (with g∗, R∗, L∗ instead of g, R, L), we have R∗ = R on f−1(Z−L), L∗ ⊂ L,
and for all y ∈ Y , diamR−1

∗ (y) < ε.

Complement. There exists a neighbourhood N∗ ⊂ N of R∗ in X×Y such that we have diam(N−1
∗ (y)) <

ε for all y ∈ Y .

Proof of Complement. If the conclusion is false, then there are two sequences of points of X × Y ,
say (xk, yk), (xk, y

′
k), k = 1, 2, 3, . . ., which converge in compact R∗ and such that d(yk, y

′
k) ≥ ε. By

compactness of X × Y , we can arrange that the sequences xk, yk and y′k converge to x, y and y′,
respectively. Then, (x, y) and (x, y′) belong to compact R∗, but d(y, y′) ≥ ε, which is a contradiction.

�

Proposition 5.5 (with Complement) will be used as a machine that swallows the data f , g, R, L,
N , ε and manufactures f , g∗, R∗, L∗, N∗.

Continuity of the homeomorphism H is proved by assuming Proposition 5.5. For k ≥ 1, the k-th
step constructs a triangle (where Z is a copy of Y ):

X Y

Z

//Rk

��fk �� gk

a submanifold Lk ⊂ Z, and a neighbourhood Nk of Rk in X × Y such that fk, gk, Rk, Lk, Nk
satisfy the conditions imposed on f , g, R, L, N in Proposition 5.5. The first step is already specified.
Proposition 5.5 gives f1, g1, R1, L1, N1 from f , id, f , Y , N , 1.

Suppose that the k-th triangle is constructed and we construct the k + 1-th triangle.

(a) If k is odd, then Proposition 5.5 gives gk+1, fk+1, R−1
k+1, Lk+1, N−1

k+1 from gk, fk, R−1
k , Lk,

N−1
k , 1/k. In brief, we apply Proposition 5.5 to the reverse triangle

Y X

Z

//R−1
k

��gk �� fk
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(b) If k is even, then it is same as the first step: Proposition 5.5 gives fk+1, gk+1, Rk+1, Lk+1,
Nk+1 from fk, gk, Rk, Lk, Nk, 1/k.

By induction, we have N ⊃ N1 ⊃ N2 ⊃ · · · . We define H = ∩kNk. Then, H is a homeomor-
phism since, for all x, we have diamH(x) ≤ diamNk(x) ≤ 1/k, for all even k, and diamH−1(x) ≤
diamN−1

k (x) ≤ 1/k, for all odd k. This homeomorphism H in the neighbourhood N of f completes
the proof of Theorem 5.1 assuming Proposition 5.5. �

Proof of Proposition 5.5. To explain the essential idea of Freedman, the reader should read the proof
to (re)prove that a surjection f : Bn → Bn such that S(f) = {a point} ⊂ intBn is approximable
by homeomorphisms (for this, we set f = R and g = id). Then, it should be noted that as soon as
S(f) = {k points} ⊂ intBn, the same argument leads us to approximate f by relations which crush
nothing, but which blow up k(k − 1) points.

Consider the pre-images R−1(y), y ∈ Y , of diameter ≥ ε, that we want to eliminate. According
to (a), (b) and (c), these sets constitute the pre-image by f of the set (Sε(f) ∩ L) ⊂ Z, where
Sε(f) = {z ∈ Z | diam f−1(z) ≥ ε}, which will allow us to follow the case in Z. Note that Sε(f) is
compact although, typically, S(f) is not. For example, Sε(f) is finite in the case of interest Freedman
(see Section 4).

Lemma 5.6 (General position). In the interior of a compact topological manifold M , let A and B
be two countable sets and nowhere dense. Then, there exists a small automorphism θ of M fixing all
points of ∂M such that θ(A) and B are separated, that is, contained in disjoint open sets.

Proof of Lemma 5.6. Consider the space Aut(M,∂M) of automorphisms of M fixing ∂M , provided
with the complete metric sup(d(f, g), d(f−1, g−1)) where d is the uniform convergence metric. In
Aut(M,∂M), the set of automorphisms θ, such that the first k points Ak of A and Bk of B satisfying
θ(Ak) ∩ B = ∅ = θ(A) ∩ Bk, constitute an open subset Uk ⊂ Aut(M,∂M) everywhere dense in
Aut(M,∂M), because A and B are closed, nowhere dense in M .

Then, famous Baire category theorem asserts that the countable intersection ∩kUk is everywhere
dense in Aut(M,∂M). Note that ∩kUk is the set of θ in Aut(M,∂M) such that θ(A) ∩ B = ∅ =
θ(A) ∩ B. But, for X1, X2 in a metrisable M , the condition X1 ∩ X2 = ∅ = X1 ∩ X2 leads the
separation of X1 and X2 in M . In effect, seen in the open subset M − (X1 ∩ X2) of M , the set
X1 − (X1 ∩ X2) and (X1 ∩ X2) are always disjoint, closed and hence separated. The mentioned
condition ensures that they contain respectively X1 and X2. �

Claim 5.7 (Trivial if Sε(f) is finite). There exists a finite union B+ of disjoint n-balls in L satisfies
the following conditions:

(1) Sε(f) ∩ L ⊂ B̊+.
(2) S(g) ∩B+ = ∅.
(3) Each connected component B′+ of B+ is small in the sense that (f−1(B′+))× (g−1(B′+)) ⊂ N ,

and standard in the sense that Z − intB′+ is homeomorphic to Sn−1 × [0, 1].

Proof of Claim 5.7. Identify Z with Bn ⊂ Rn to give L an affine linear structure. Let K be a
compact neighbourhood of compact Sε(f) ∩ L which is a subpolyhedra of L and disjoint from S(g),
see Proposition 5.5(c). We subdivide K into a simplicial complex of which each simplex L is linear
in L and so small such that f−1(∆) ∩ g−1(∆) ⊂ N . Then (compare, the proof of Lemma 5.6), by a
small perturbation (a translation if we want) of K in L, we disengage the (n − 1)-skeleton K(n−1)

from the compact countable Sε(f), without harming the properties of K already established. Finally,
B+ is defined as K minus a small δ open neighbourhood of K(n−1) in Rn. Each component B′+ of B+

is convex and in intZ = B̊n; therefore Z − B̊′+ is homeomorphic to Sn−1 × [0, 1], by an elementary
argument. �

In intB+, we choose now a union B of balls (one in each connected component of B+), which still
satisfies (1), (2), (3) and also

(4) S(f) ∩ ∂B = ∅.
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We set L∗ = L−B. For each connected component B′+ of B+, we are now modifying g and R above
B′+ to define g∗ and R∗. These changes for the various connected components B′+ are disjoint and
independent. Therefore, it is enough to specify one. Moreover, in order to simplify the notations, we
allow ourselves to specify this change only in the case B+ is connected.

Let c : Z → B+ be a homeomorphism, called the compression, which fixes all points of B. (We

remember that Z − B̊ is homeomorphic to Sn−1 × [0, 1] and B+ − B̊.) We should modify c by

composing with a homeomorphism θ of B+− B̊ fixing ∂B+ ∪ ∂B given by Lemma 5.6, to assure that

S(f) and c(S(f)) are separated on the open B̊+ −B.

Figure 22.

Since g−1(B+) is a ball in Y (in fact, g is a homeomorphism over B+), we can also choose i so
that i|∂X is (g−1 ◦ c ◦ f)|∂X . We set

g∗ =

{
g on g−1(Z − B̊+),

c ◦ f ◦ i−1 on g−1(B+).

On g−1(∂B+), g∗ is well-defined since g = c ◦ f ◦ (g−1 ◦ c ◦ f)−1 on g−1(∂B+). We set

R∗ =

{
R on f−1(Z − B̊+),

g−1 ◦ f = (i ◦ f−1 ◦ c−1) ◦ f on f−1(B+).

More precisely, on f−1(B+), we specify

R∗ =

{
(i ◦ f−1 ◦ c−1) ◦ f on f−1(B+ − B̊),

i on f−1(B).

On f−1(∂B), R∗ is well-defined since c fixes all points of ∂B, and S(f) ∩ ∂B = ∅.
We now specified the modification L∗, g∗, R∗ of L, g, R claimed by Proposition 5.5. (We remark

that if B+ is a union of k balls rather than one, the modification is done in k disjoint and independent
steps, each similar to the one just specified for connected B+.)

Verifying the claimed properties for L∗, g∗, R∗ is direct. (There are already manuscripts [Fre79,
Anc81] which offer more details.) �

Remark 1. The system of the above formula, specifying g∗ and R∗, hides geometry. We now try
to reveal it by looking f and g respectively as fibrations ϕ and γ, of base Z, and variable fibre,
which allows us to use the notion of fibre restriction. Let γ0 = γ − (γ|B̊+

). We form γ∗ of ϕ t γ0

by identifying c|∂Z the sub-fibres (whose fibres are points) ϕ|∂Z and γ0|∂B+ . Then, we can identify
the total space and the base of γ∗ = ϕ ∪ γ0 to those of γ by an extension of γ0 → γ. More precisely,

we use (id |Z−B̊+
) ∪ c between bases, which is the identity on B ⊂ B+. Then, ϕ and γ∗ : Y

g∗−→ Z

are fibrations over Z naturally isomorphic on B ∪ L, which defines a relation R∗ and finer than the
simple correspondence of fibres g−1

∗ ◦ f .

Remark 2. In the proof of Theorem 5.1, we can easily ensure that fn and gn converge towards f∞
and g∞, and such that g∞ ◦ H = f∞. Thus, as fibres, f∞ and g∞ are isomorphic. Moreover, each
fibre of f∞ or g∞ is homeomorphic to a fibre of f . I point out that f∞ and g∞ remind me of the two
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infinite products of Mazur [Maz59] and that H reminds me of the famous Eilenberg-Mazur swindle,
which completes the proof of Theorem 5.3 (weakened version) given in [Maz59].

Remark 3 (Following Remark 2). If we want to avoid unnecessary complications in the structure
of f∞ and g∞, it should be noted that in the definition of g∗ above, we have the right to replace
the map f which occurs by any good map f ′ : X → Y such that f = f ′ on f−1(B). Then, for any
use of Proposition 5.5 in the proof of Theorem 5.1, we find that one has the possibility of choosing
for an alternative f ′ always a map isomorphic to to a map f given in Theorem 5.1. With this little
refinement, the proof of Theorem 5.1 in the case S(f) = {2 points} is close to the argument of

[Maz59]. In particular, S(f∞) and S(g∞) can be homeomorphic to Z ∪ {∞,−∞}.
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